Preliminary

Preliminary

Connection Diagram

(Top Thru View)

Pin Descriptions for FBGA

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
CP_{n}	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{31}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{31}$	3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
A	O_{1}	O_{0}	$\overline{\mathrm{OE}}_{1}$	CP_{1}	I_{0}	I_{1}
B	O_{3}	O_{2}	GND	GND	I_{2}	I_{3}
C	O_{5}	O_{4}	$\mathrm{V}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC} 1}$	I_{4}	I_{5}
D	O_{7}	O_{6}	GND	GND	I_{6}	I_{7}
E	O_{9}	O_{8}	GND	GND	I_{8}	I_{9}
F	O_{11}	O_{10}	$\mathrm{V}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC} 1}$	I_{10}	I_{11}
G	O_{13}	O_{12}	GND	GND	I_{12}	I_{13}
H	O_{14}	O_{15}	$\overline{\mathrm{OE}}_{2}$	CP_{2}	l_{15}	I_{14}
J	O_{17}	O_{16}	$\overline{\mathrm{OE}}_{3}$	CP_{3}	l_{16}	I_{17}
K	O_{19}	O_{18}	GND	GND	I_{18}	I_{19}
L	O_{21}	O_{20}	$\mathrm{V}_{\text {CC2 }}$	$\mathrm{V}_{\mathrm{CC2}}$	I_{20}	I_{21}
M	O_{23}	O_{22}	GND	GND	I_{22}	I_{23}
N	O_{25}	O_{24}	GND	GND	I_{24}	I_{25}
P	O_{27}	O_{26}	$\mathrm{V}_{\text {CC2 }}$	$\mathrm{V}_{\text {CC2 }}$	I_{26}	I_{27}
R	O_{29}	O_{28}	GND	GND	I_{28}	l_{29}
T	O_{30}	O_{31}	$\overline{\mathrm{OE}}_{4}$	CP_{4}	I_{31}	I_{30}

Truth Tables

Inputs			Outputs
$\mathrm{CP}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}}-\mathrm{I}_{15}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{3}}$	$\overline{\mathrm{OE}}_{\mathbf{3}}$	$\mathrm{I}_{16}-\mathrm{I}_{\mathbf{2 3}}$	$\mathrm{O}_{16}-\mathrm{O}_{\mathbf{2 3}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L= LOW Voltage Level
X = Immaterial

Inputs			Outputs
$\mathrm{CP}_{\mathbf{4}}$	$\overline{\mathrm{OE}}_{\mathbf{4}}$	$\mathrm{I}_{\mathbf{2 4}} \mathrm{I}_{\mathbf{3 1}}$	$\mathrm{O}_{\mathbf{2 4}}-\mathrm{O}_{\mathbf{3 1}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Z = HIGH Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP

Functional Description

The LVTH322374 consists of thirty-two edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 32-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock $\left(\mathrm{CP}_{\mathrm{n}}\right)$ transition. With the Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops.

Absolute Maximum Ratings(Note 2)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	
$\overline{I_{\mathrm{K}}}$	DC Input Diode Current	-50	V_{1} < GND	mA
T ${ }_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
I_{0}	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at LOW State	
I_{CC}	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH Level Output Current		-32	mA
I_{OL}	LOW Level Output Current		64	mA
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 3: I_{O} Absolute Maximum Rating must be observed.
DC Electrical Characteristics

Symbol	Parameter		V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
$\overline{\mathrm{V}_{\text {IK }}}$	Input Clamp Diode Voltage			2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
$\overline{V_{1 H}}$	Input HIGH Voltage		2.7-3.6	2.0		V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or	
V_{IL}	Input LOW Voltage		2.7-3.6		0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$	
V_{OH}	Output HIGH Voltage		2.7-3.6	$\mathrm{V}_{\text {cc }}-0.2$		V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
			3.0	2.0			$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		2.7		0.2	v	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
			3.0		0.8		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	
$\mathrm{l}_{\text {(HOLD) }}$	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
			-75		$\mathrm{V}_{1}=2.0 \mathrm{~V}$			
$I_{\text {(OD) }}$	Bushold Input Over-Drive Current to Change State			3.0	500		$\mu \mathrm{A}$	(Note 4)
			-500			(Note 5)		
\bar{T}	Input Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
		Control Pins	3.6		± 1		$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
			3.6		-5		$\mathrm{V}_{1}=0 \mathrm{~V}$	
		Data Pins			1		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$	
IofF	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Output Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
IozL	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	
Iozh	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$	
$\mathrm{l}_{\text {OzH }}{ }^{+}$	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {CCH }}$	Power Supply Current	$\left(\mathrm{V}_{\mathrm{CC} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{CC} 2}\right)$	3.6		0.19	mA	Outputs HIGH	
${ }_{\text {CCL }}$	Power Supply Current	$\left(\mathrm{V}_{\mathrm{CC} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{CC} 2}\right)$	3.6		5	mA	Outputs LOW	
${ }_{\text {ICCz }}$	Power Supply Current	($\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$)	3.6		0.19	mA	Outputs Disabled	

DC Electrical Characteristics (Continued)						
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
ICCZ^{+}	Power Supply Current $\quad\left(\mathrm{V}_{\mathrm{CC} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{CC} 2}\right)$	3.6		0.19	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, \\ & \text { Outputs Disabled } \end{aligned}$
$\Delta^{\text {l }}$ C	Increase in Power Supply Current ($\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$) (Note 6)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND

Noternal driver must source at least the specified current to swich from LOW-to-HIG
Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND
Dynamic Switching Characteristics (Note 7)

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		0.8		V	(Note 8)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.
AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency	160		160		MHz
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	2.2	4.9	2.2	5.1	
$\mathrm{t}_{\text {PL }}$	CP to O_{n}	2.0	5.3	2.0	6.2	ns
${ }_{\text {t PZL }}$	Output Enable Time	1.8	4.9	1.8	6.0	
			5.6			ns
tpLZ	Output Disable Time	2.0	5.0	2.0	5.1	
$\mathrm{t}_{\text {PHZ }}$		2.4	5.4	2.4	5.7	ns
$\mathrm{t}_{\text {s }}$	Setup Time	1.8		2.0		ns
t_{H}	Hold Time	0.8		0.1		ns
t_{w}	Pulse Width	3.0		3.0		ns

Capacitance (Note 9)

Symbol	Parameter	Conditions	Typical	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}, \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 9: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.
74LVTH322374 Low Voltage 32-Bit D-Type Flip-Flop with 3-STATE Outputs and 25Ω Series Resistors in the

Physical Dimensions inches (millimeters) unless otherwise noted

notes:
A. THIS PACKAGE CONFORMS TO JEDEC MO-205
B. ALL DIMENSIONS IN MLLLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president of fairchild SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
