Outputs (Preliminary)

FAIRCHILD

SEMICONDUCTOR

February 2001 Revised August 2001

74LVTH322374 Low Voltage 32-Bit D-Type Flip-Flop with 3-STATE Outputs and 25 Ω Series Resistors in the Outputs (Preliminary)

General Description

The LVTH322374 contains thirty-two non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 32-bit operation.

The LVTH322374 is designed with equivalent 25 $\!\Omega$ series resistance in both the HIGH and LOW states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The LVTH322374 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs

These flip-flops are designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH322374 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Power Down high impedance provides glitchfree bus loading
- Outputs include equivalent series resistance of 250 to make external termination resistors unnecessary and reduce overshoot and undershoot
- ESD performance: Human-body model > 2000V Machine model > 200V
 - Charged-device model > 1000V
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

Ordering Code:

r4LVTH322374 Low Voltage 32-Bit D-Type Flip-Flop with 3-STATE Outputs and 25 Ω Series Resistors in the

Pin Descriptions for FBGA

Pin Names	Description				
OEn	Output Enable Input (Active LOW)				
CPn	Clock Pulse Input				
I ₀ –I ₃₁	Inputs				
O ₀ -O ₃₁	3-STATE Outputs				

FBGA Pin Assignments

	1	2	3	4	5	6
Α	0 ₁	O ₀	OE ₁	CP ₁	I ₀	I ₁
В	O ₃	0 ₂	GND	GND	l ₂	l ₃
С	0 ₅	0 ₄	V _{CC1}	V _{CC1}	I ₄	1 ₅
D	0 ₇	0 ₆	GND	GND	I ₆	1 ₇
Е	0 ₉	0 ₈	GND	GND	I ₈	l ₉
F	0 ₁₁	0 ₁₀	V _{CC1}	V _{CC1}	I ₁₀	I ₁₁
G	O ₁₃	O ₁₂	GND	GND	I ₁₂	I ₁₃
н	O ₁₄	O ₁₅	OE ₂	CP ₂	I ₁₅	I ₁₄
J	0 ₁₇	O ₁₆	\overline{OE}_3	CP_3	I ₁₆	I ₁₇
к	0 ₁₉	0 ₁₈	GND	GND	I ₁₈	I ₁₉
L	O ₂₁	O ₂₀	V _{CC2}	V _{CC2}	I ₂₀	I ₂₁
м	O ₂₃	O ₂₂	GND	GND	I ₂₂	I ₂₃
N	O ₂₅	O ₂₄	GND	GND	I ₂₄	I ₂₅
Р	O ₂₇	O ₂₆	V _{CC2}	V _{CC2}	I ₂₆	I ₂₇
R	O ₂₉	O ₂₈	GND	GND	I ₂₈	I ₂₉
Т	O ₃₀	O ₃₁	\overline{OE}_4	CP ₄	I ₃₁	I ₃₀

Truth Tables

	Inputs		Outputs
CP1	OE ₁	I ₀ –I ₇	0 ₀ –0 ₇
~	L	Н	Н
~	L	L	L
L	L	х	Oo
Х	Н	Х	Z
	Inputs		Outputs
CP ₃	Inputs OE ₃	I ₁₆ –I ₂₃	Outputs O ₁₆ -O ₂₃
CP3	<u> </u>	I ₁₆ –I ₂₃ Н	
-	<u> </u>		
-	<u> </u>		

	Inputs		Outputs
CP2	OE ₂	I ₈ –I ₁₅	0 ₈ -0 ₁₅
~	L	Н	н
~	L	L	L
L	L	Х	Oo
Х	Н	Х	Z
	Inputs		Outputs
	•		-
CP4		I ₂₄ –I ₃₁	O ₂₄ -O ₃₁
CP4		I₂₄–I₃₁ Н	О ₂₄ –О ₃₁ Н
			О ₂₄ -О ₃₁ Н L
			0 ₂₄ -0 ₃₁ H L O ₀

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = HIGH Impedance $O_0 =$ Previous O_0 before HIGH-to-LOW of CP

Functional Description

The LVTH322374 consists of thirty-two edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 32-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

www.fairchildsemi.com

74LVTH322374

Absolute Maximum Ratings(Note 2) Symbol Parameter Value Conditions Units Supply Voltage -0.5 to +4.6 V V_{CC} VI DC Input Voltage -0.5 to +7.0 V V_{O} DC Output Voltage Output in 3-STATE -0.5 to +7.0 ٧ Output in HIGH or LOW State (Note 3) -0.5 to +7.0 DC Input Diode Current -50 $V_I < GND$ mΑ $I_{\rm IK}$ DC Output Diode Current -50 V_O < GND mΑ I_{OK} DC Output Current V_O > V_{CC} Output at HIGH State I_0 64 mΑ 128 Output at LOW State $V_{O} > V_{CC}$ DC Supply Current per Supply Pin ±64 mΑ I_{CC} DC Ground Current per Ground Pin ±128 mΑ I_{GND} Storage Temperature -65 to +150 °C T_{STG}

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
/	Input Voltage	0	5.5	V
ОН	HIGH Level Output Current		-32	mA
OL	LOW Level Output Current		64	mA
Γ _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 3: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = -40^{\circ}C$	C to +85°C	Units	Conditions	
Symbol	Parameter	(V)	Min	Мах	Units	Conditions	
V _{IK}	Input Clamp Diode Voltage	2.7		-1.2	V	I _I = -18 mA	
V _{IH}	Input HIGH Voltage	2.7–3.6	2.0		V	$V_0 \le 0.1 V \text{ or}$	
VIL	Input LOW Voltage	2.7-3.6		0.8	V	$V_{O} \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage	2.7-3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA	
		3.0	2.0		v	$I_{OH} = -12 \text{ mA}$	
V _{OL}	Output LOW Voltage	2.7		0.2	V	I _{OL} = 100 μA	
		3.0		0.8	v	$I_{OL} = 12 \text{ mA}$	
I _{I(HOLD)}	Bushold Input Minimum Drive	3.0	75		μA	$V_{I} = 0.8V$	
		3.0	-75		μА	$V_{I} = 2.0V$	
I _{I(OD)}	Bushold Input Over-Drive	3.0	500		μA	(Note 4)	
	Current to Change State	3.0	-500		μА	(Note 5)	
l _l	Input Current	3.6		10		$V_{I} = 5.5V$	
	Control P	ins 3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$	
	Data P	ins 3.6		-5	μΑ	$V_I = 0V$	
	Data F	115 5.0		1		$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage Current	0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$	
I _{PU/PD}	Power Up/Down 3-STATE	0–1.5V		±100	μA	$V_0 = 0.5V \text{ to } 3.0V$	
	Output Current	0-1.50		100	μΑ	$V_I = GND \text{ or } V_{CC}$	
I _{OZL}	3-STATE Output Leakage Current	3.6		-5	μΑ	$V_{0} = 0.5V$	
I _{OZH}	3-STATE Output Leakage Current	3.6		5	μΑ	V _O = 3.0V	
I _{OZH} +	3-STATE Output Leakage Current	3.6		10	μΑ	$V_{CC} < V_O \le 5.5 V$	
I _{ССН}	Power Supply Current (V _{CC1} or V _{CC2})	3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current (V _{CC1} or V _{CC2})	3.6		5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current (V _{CC1} or V _{CC2})	3.6		0.19	mA	Outputs Disabled	

www.fairchildsemi.com

DC Electrical Characteristics (Continued)

DC Electrical Characteristics (Continued)								
Symbol	Parameter V_{CC} $T_A = -40^{\circ}C$ to $+85^{\circ}C$ Units Conditions						Conditions	
Symbol	Falante	5161	(V)	Min	Min Max		Conditions	
I _{CCZ} +	Power Supply Current	(V _{CC1} or V _{CC2})	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
							$V_{CC} \le V_O \le 5.5V$, Outputs Disabled	
ΔI _{CC}	Increase in Power Supply Cur	rent (V _{CC1} or V _{CC2})	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
	(Note 6)						Other Inputs at V _{CC} or GND	

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 7)

Symbol	Parameter	V _{cc}		$\textbf{T}_{\textbf{A}}=\textbf{25}^{\circ}\textbf{C}$		Units	Conditions
Oymbol	i al ameter	(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\boldsymbol{\Omega}$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)
V _{OLV}	Quiet Output Minimum Dynamic VOL	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 8: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

	T _A = -40	°C to +85°C,	C _L = 50 pF, I	$R_L = 500\Omega$		
Parameter		$3V \pm 0.3V$	V _{CC}	Units		
	Min	Max	Min	Max	Ť	
Maximum Clock Frequency	160		160		MHz	
Propagation Delay	2.2	4.9	2.2	5.1	ns	
CP to On	2.0	5.3	2.0	6.2	115	
Output Enable Time	1.8	4.9	1.8	6.0	ns	
	1.8	5.6	1.8	6.9	115	
Output Disable Time	2.0	5.0	2.0	5.1	ns	
	2.4	5.4	2.4	5.7	115	
Setup Time	1.8		2.0		ns	
Hold Time	0.8		0.1		ns	
Pulse Width	3.0		3.0		ns	
	Maximum Clock Frequency Propagation Delay CP to O _n Output Enable Time Output Disable Time Setup Time Hold Time	Parameter V _{CC} = 3. Maximum Clock Frequency 160 Propagation Delay 2.2 CP to On 2.0 Output Enable Time 1.8 Output Disable Time 2.0 Setup Time 1.8 Hold Time 0.8	Normalized in the second system V _{CC} = $3.3V \pm 0.3V$ Min Max Maximum Clock Frequency 160 Propagation Delay 2.2 4.9 CP to O _n 2.0 5.3 Output Enable Time 1.8 4.9 Output Disable Time 2.0 5.0 Setup Time 1.8 Hold Time	Note The Section 10 and the Sectio	Min Max Min Max Min Max Min Max Maximum Clock Frequency 160 160 160 Propagation Delay 2.2 4.9 2.2 5.1 CP to On 2.0 5.3 2.0 6.2 Output Enable Time 1.8 4.9 1.8 6.0 1.8 5.6 1.8 6.9 Output Disable Time 2.0 5.0 2.0 5.1 2.4 5.4 2.4 5.7 5 Setup Time 1.8 2.0 1 1 Hold Time 0.8 0.1 1 1	

Capacitance (Note 9)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = OPEN, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V, V_O = 0V \text{ or } V_{CC}$	8	pF
Note 9: Cap	acitance is measured at frequency f = 1 MHz, per N	IIL-STD-883, Method 3012.		

www.fairchildsemi.com

6